PROGRAM OF THE
88TH ANNUAL MEETING OF THE
AMERICAN ASSOCIATION OF PHYSICAL
ANTHROPOLOGISTS
MARCH 27 – 30, 2019

To be held at the
Hilton Cleveland Downtown
100 Lakeside Ave East • Cleveland, OH 44114

AAPA Scientific Program Committee
Steven R. Leigh, Chair

Amanda Agnew
Kari Allen
Ben Auerbach
Jonathan Bethard
Nicole Burt
James Calcagno
Zachary Cofran
Paul Constantino
Lynn Copes
Jennifer Cramer
Andrew Deane
Maureen Devlin
Christina Fojas

Rebecca Gilmour
C. Eduardo Guerra Amorim
Lauren Halenar-Price
Ashley Hammond
Donna Harrison
Geoff Hayes
Amber Heard-Booth
Brian Hemphill
Nathan Holton
Rob Hoppa
Jennifer Hotzman
Rebecca Jabbour
Jessica Joganic

Kent Johnson
Erin Kane
Claire Kirchhoff
Myra Laird
Kristi Lewton
Christina Nicholas
Heather Norton
Robert O’Malley
Alejandra Ortiz
Nicholas Passalacqua
Christine Pink
Stephanie Poindexter
Emma Pomeroy

Sean Prall
Melissa Schaefer
Elizabeth St Clair
Claire Terhune
SamUrlacher
Qian Wang
Timothy Webster
Katherine Weisensee
Julie Wieczkowski
Frank Williams
John Willman

AAPA Meetings Director
Lori Strong, Burk & Associates, Inc.

Cleveland Advance Team
Edward H. Hagen
Christopher Kuzawa
Steven R. Leigh

W. Scott McGraw
Denise Su

Program Assistant
Kathleen McGuire

Local Arrangements Committee
Denise Su
Yohannes Haile-Selassie
A tale of three monkeys: male-mediated prenatal loss explained

JACINTA C. BEEBNER1,2, MATT N. ZIPPLE3, EILA K. ROBERTS4 and SUSAN C. ALBERTS5,6
1Department of Anthropology, University of Michigan, 2Department of Psychology, University of Michigan, 3Department of Biology, Duke University, 4Department of Integrative Biology, Michigan State University, 5Department of Evolutionary Anthropology, Duke University, 6Institute of Primate Research, National Museums of Kenya

Infanticide by males has been the subject of intense empirical and theoretical study for decades. However, a related phenomenon, male-mediated prenatal loss, has received considerably less attention. Male-mediated prenatal loss occurs when inseminated or pregnant females terminate reproductive effort following exposure to a non-sire male, either through implantation failure or pregnancy termination. Male-mediated prenatal loss encompasses two sub-phenomena: sexually selected feticide and the Bruce effect. In this talk, we walk through three different evolutionary scenarios in three species of primate - the yellow baboon, the gelada, and the chacma baboon - to lay out a framework that explains the relationship between infanticide, feticide, and the Bruce effect and describes the proximate and ultimate mechanisms involved for each. We argue that male-mediated prenatal loss may have played a greater role in mammalian social evolution than has previously been documented.

Does learning evolutionary theory within anthropology help students reason about human evolution?

ELIZABETH P. BEGGROW
Center for Life Sciences Education, The Ohio State University

Situated cognition theory sees learning as situated within the context of the social and cultural setting in which it takes place. Consequently, learning evolution within biological anthropology (b.a.) should result in the knowledge acquisition, retrieval and problem solving of evolutionary concepts being situated within the human context. This hypothesis was tested by asking introductory level b.a. (137) and biology (147) students at a Midwestern university to explain evolutionary change of familiar or unfamiliar traits in either humans or nonhuman taxa and assessing their reasoning patterns. A previously published instrument, the ACORNS, was used to collect data post instruction on basic evolutionary concepts. Responses were scored for the presence of accurate key concepts (KCs) (e.g., variation, heritability, differential reproduction). A Mann-Whitney U test showed no differences for the biology sample between assessments that used human vs. nonhuman taxa, but the b.a. sample had a higher KC score (0.01) for the assessment with nonhuman taxa and used the KC ‘differential reproduction’ more for nonhuman taxa (p = 0.024). Furthermore, a comparison of how familiar and unfamiliar traits in the items affect reasoning patterns found no differences between items for the biology sample, while the b.a. sample had higher KC scores for items that asked about familiar traits in nonhuman taxa (p = 0.006). These results suggest that, overall, biology students are able to generalize their knowledge about evolutionary change across contexts more fluidly, while some contextual features appear to impact anthropology students’ reasoning patterns, highlighting important implications for b.a. instruction.

This research was funded by the Marilyn Ruth Hathaway Education Scholarship Fund and NSF REESE grant 0909999.

Hominin origins: New evidence from the eastern Mediterranean

DAVID R. BEGUN1, MADELAINE BÖHME2,3, GEORGE KOUFFOS4, NIKOLAI SPASSOV5, AYLIA SEVIM EROL6 and ALPER YENER YAVUZ7
1Department of Anthropology, University of Toronto, 2Department of Geoscience, Eberhard-Karls-University, 3Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Senckenberg, 4Department of Geology, Laboratory of Geology and Palaeontology, Aristotle University of Thessaloniki, 5National Museum of Natural History, Bulgarian Academy of Sciences, 6Department of Anthropology, Ankara University, 7Department of Anthropology, MAKU

Great ape fossils, ranging in age from about 9.5 to 7.2 Ma, are known from Bulgaria, Greek Macedonia, Attica and Anatolia. Usually attributed to a single genus, recent analysis confirms the generic distinction of Graecopithecus (Attica) and Ouranopithecus (Macedonia.) Within Macedonia, the samples from Ravin de la Plieue and Xirochori, both about 9.5 Ma, form a well-defined hypodigm for Ouranopithecus macedoniensis. A younger sample from Macedonia but further to the south, Nikiti 1, dated to between 8.5 to 9 Ma, is close in age to Çorakyerler from central Anatolia. Nikiti 1 and Çorakyerler are distinguished from Ouranopithecus macedoniensis by larger post-canine teeth, more homomorphic premolars and smaller canines. Graecopithecus, from the 7.2 Ma site of Pyrgos Vassiliissis (Attica), has the smallest canine (as suggested by root size), fused premolar roots and the largest molars relative to mandibular corpus dimensions of all eastern Mediterranean great apes. These specimens represent an evolving lineage characterized by increasing postcanine and decreasing canine sizes. We propose two alternative phylogenetic hypotheses. This lineage, linked phylogenetically with the middle and late Miocene dryopithecines, may be a terminal representative of the radiation of European Miocene great apes, having survived and adapted to more open conditions in the eastern Mediterranean. Alternatively, this lineage may represent a transition from the stem lineages of central and Western Europe to the earliest known hominins of Africa (e.g. Sahelanthropus, Orrorin) and as such documents the origin of the hominins in Europe.

Cranial trauma prevalence in Neanderthals and early Upper Paleolithic modern humans

JUDITH BEIER1, NILS ANTHES2, JOACHIM WAHL3,4 and KATERINA HARVATI1,4
1Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, 2Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, 3Osteology, State Office for Cultural Heritage Management Baden-Württemberg, Konstanz, 4DFG Center for Advanced Studies ‘Words, Bones, Genes, Tools’, University of Tübingen

A high frequency of traumatic injuries has been considered common for Neanderthal (NEA) skeletal remains, and is variously attributed to stressful NEA lifestyles, violent behaviors and dangerous hunting practices – in contrast to Upper Paleolithic anatomically modern humans (UPH). However, only few quantitative studies on Paleolithic traumatic exist to date and interpretations are mainly based on narrative, case-based evidence. Here, we assess the hypothesis of higher cranial trauma prevalence in NEA compared to UPH. Employing a population-level approach, we compiled an exhaustive database from the literature comprising 114 NEA and 90 UPH specimens (corresponding to 295 NEA and 541 UPH single cranial elements) with and without trauma from sites all over West-Eurasia dating to ca. 80-20 ka BP. We used generalized linear mixed models employing a Markov chain Monte Carlo algorithm to examine how trauma prevalence can be predicted by various variables, including taxon, age-at-death, sex, and skeletal preservation, while accounting for variation between geographic locations and cranial elements. Results show similar overall trauma prevalence in the two taxa, rejecting the hypothesis of higher NEA cranial trauma. Moreover, we found a higher prevalence for males in both taxa.